

Circulating Stromal Cells in Immunotherapy

Utilizing a Total Blood Based Biopsy

Daniel Adams

Senior Research Scientist/Head of Clinical Core Laboratory

Creaty MicroTech, Inc.

August 24, 2016

- Employee of Creaty MicroTech, Inc.
- Multiple patents on the technologies discussed

Utilities of Blood Based Biopsy

for cancer diagnostics

- Circulating Tumor Cells (CTCs) if present
 - Sequential tracking of therapy
 - Genomic and proteomic profiling of tumor
- CTCs alone not enough and additional needs
 - EARLY and late stage diseases (CTCs only late)
 - Majority of patient population (CTC only certain pop.)
 - Immunotherapy (targets non-malignant cells)
 - Assist drug development

Immunotherapies involve multiple cell types (Ex: PD-1/PD-L1 pathway)

PD-L1 can be found on:

- Tumor cells
- Stromal macrophages
- Stromal Tc cells
- Stromal Th cells
- Stromal Dendritic cells
- Tumor fibroblasts
- Others

We must rethink how companion diagnostics work

Immunotherapeutic biomarkers must have multi-cellular capabilities

- Circulating Tumor cells (CTCs)
- Circulating Stromal cells (CStCs)
 - Tumor derived endothelial cells
 - Epithelial-mesenchymal transition cells (EMTs)
 - Tumor associated macrophage-like cells (CAMLs)
 - Tumor derived T cells
 - Tumor associated fibroblasts

Requirements of Blood Based Biopsy for Immunotherapy

- Applicable to sequential tracking of therapy
- Allow genomic and proteomic profiling of tumor
- Applicable to all stages of disease
- Must isolate heterogeneous populations of Multiple cell types
- Must isolate heterogeneous populations of stromal cells (Targeting non-malignant cells)

Advantages of Circulating Tumor Cells (CTCs)

Advantages

- Provides prognostic information
- Tracks response to therapy
- May provide:
 - Genomic profiling of tumor/metastases
 - Proteomic profiling of the tumor/metastases

Pathologically defined CTCs (PDCTC)

- CK 8, 18, 19 (+) and filamentous
- DAPI (+) cancerous morphology or in division
- CD45 (-)

Disadvantages of CTCs

Disadvantages

- Uncommon (~0-10 per mL blood)
- Low frequency (19%-57% of malignant carcinomas)
- Only found in late stage/metastatic
- Tumor cells alone do not represent the stromal environment

Cell Isolation Based on Size

CellSieveTM Microfilters

- Uniform 7 μm pore size and distribution with high porosity
 - Rapid, consistent and gentle flow
 - 3 min to filter 7.5 ml of blood
 - Small (100uL) and large (>30mL) sample size
- Non-fluorescence
- CellSave tubes are run ≤ 96 hrs

EMT like Cells

Criteria unique to high resolution imagery

- CK 8, 18, 19 (+) diffuse/non-filamentous
- **DAPI** (+) cancerous morphology
- CD45 (-)

CTCs in Division Cytokeratin (green), DAPI(blue)

Discovery

Discovery

Circulating Cancer Associated Macrophage-like Cells (CAMLs)

CAMLs in Cancer Patients

None in healthy controls

Total n=272

Cancer types

- Breast
- Prostate
- Pancreatic
- Lung (NSCLC)
- o Colon
- Esophageal

Sensitivity 89% (95% CI 85-93%) Specificity 100% (95% CI 91-100%) PPV 100% (95% CI 98-100%)

Adams, et al. ASCO 2015 Adams et al CEBP 2016

We analyze CTCs and CStCs to maximize useable biomarkers

Multi-analyte Subtyping CTCs and CStCs using a single sample

Analysis of Immunotherapy

Breast

CTC with bound white blood cells

Cytokeratin positive CStC with bound white blood cell

Proteomic profiling of each individual patient in Real-Time

	CK	VM	PD-L1	CXCR4	CD34	EpCAM	CD45	PD-1	CD14
P4									
P6									
P2									
P12									
P11									
P10									
P1									
P3									
P5									
P7									
P9									
P8									

Tracking Origin of CStCs

Low Before Radiation

High Post Radiation

RAD50 foci ranged from 0-20 per cell, with an average of 0.57 at T0 that increased to 5.11 at T1 (p<0.001) during radiotherapy

Tracking upregulation and down regulation of biomarkers in real time

Low Before Radiation

High Post Radiation

PD-L1 expression ranged from 34-2711 pixel intensity, with an average of 281 at T0 and 565 at T1 (p=0.07).

PD-L1 changes in NSCLC patients before and after radiation treatment

Ongoing Research and Clinical Trials with Creaty Partners

	4 th Q 2015	1st Q 2016	2 nd Q 2016	3 rd Q 2016
MEK inhibitors + PD-1 therapy (IV breast)				
PD-1 therapy (stage IV lung)				
PD-1 therapy (Renal Cell)				
Platinum based chemo+PD-1 (IV breast)				
PD-1 therapy + Radiation (stage III lung)				
PD-1 therapy + Radiation (stage I lung)				

Research Trial

Clinical Trial

All trials are tracking CTCs, EMTs, and CAMLs

Summary of Creatv's Capabilities

- CellSieveTM Blood Based Biopsy isolates CTCs and CStCs
 - Provides sequential tracking of cancer-baseline through treatment
 - Applicable to ALL Stages of cancer (screening through prognosis)
 - Allows genomic and proteomic profiling of multiple cell types
 - Useful in most solid tumors
- Analyze all subpopulations of tumor cells and stromal cells
 - Not marker specific, i.e. multicellular analysis
 - Parallel subtyping of cells and drug targets
- Wide variety of cancer specific cell analyzes (CTCs and CStCs)
 - Companion diagnostics
 - Monitor treatment
 - Cancer screening

CREATA MicroTech

Research Collaborators

Research Institute	Collaborators		
University of Maryland Baltimore	Stuart Martin, Ph.D., Monica Charpentier, M.D.		
	Martin Edelman, M.D., Rena Lepidus. Ph.D.		
Northwestern University	Massimo Cristofanilli, M.D.		
Fox Chase Cancer Center	R. Katherine Alpaugh, Ph.D.		
Johns Hopkins University	David Loeb, M.D.		
Mayo Clinic Cancer Center	Thai Ho, M.D., Saranya Chumsri, M.D.		
MD Anderson	Steven Lin, M.D.		
Medical College of Wisconsin	Susan Tsai, M.D.		
OHSU Knight Cancer Institute	Raymond C. Bergan, M.D.		
Duke University	Jeffery Marks, Ph.D.		
Memorial Sloan Kettering Cancer Center	Daniel Danila, M.D.		
Washington University	Rebecca Aft, M.D.		
University of Chicago	Susan Cohn, M.D.		
George Washington University	Christian C. Haudenschild, M.D.		
Hememics Biotechnologies	Steigrimur Stefansson, Ph.D.		

- Thank the volunteers who contributed to these studies
- Maryland TEDCO MTTCF award
- The U.S. Army Research Office (ARO) and the Defense Advanced Research Projects Agency (DARPA) (W911NF-14-C-0098)

The content of the information does not necessarily reflect the position or the policy of the US Government.

Company Contact

301-983-1650

cmtang@creatvmicrotech.com

www.creatvmicrotech.com

Booth #47