Isolation and Identification of Disseminated Tumor Cells from Bone Marrow

Peixuan Zhu1*, Sreeraj G. Pillai2*, Dan Adams3, Mark Watson2, Shuhong Li1, Olga V. Makarova4, Platte Amstutz5, Cha-Mei Tang5, Rebecca Aft2

1Creatv MicroTech, Inc., Rockville, MD; 2Washington University, St. Louis, MO; 3Creatv MicroTech, Inc., Monmouth Junction, NJ; 4Creatv MicroTech, Inc., Chicago, IL; 5Creatv MicroTech, Inc., Potomac, MD *These authors contributed equally

INTRODUCTION

- Disseminated tumor cells (DTCs) are detected in the bone marrow (BM) of up to 40% of breast cancer patients at the time of diagnosis and are an independent prognostic factor for recurrent disease development.
- DTCs can persist for years and remain a predictor for disease recurrence.
- DTCs are rare cells and present at a level of 1-20 per million nucleated BM cells.
- Two important applications for DTC detection are monitoring of therapeutic efficacy in those patients without radiographic or clinical evidence of disease and identifying therapeutic targets in those patients with minimal residual disease.
- Present techniques for detection of DTCs are often laborious, and insensitive due to the molecular heterogeneity of the DTCs.
- Robust, reproducible assays for detection of DTCs are needed for characterization, staging, and monitoring therapeutic response.
- Conventional antibody-based enrichment methods may not capture a large percentage of DTCs.

We explored the use of microfiltration, an antibody-independent method, to improve detection efficiency of low level DTCs in bone marrow.

MATERIALS & METHODS

- BM aspirates were collected from normal volunteers or patients with breast cancer.
- For spiking experiments, SKBR3 breast cancer cells were added at various concentrations to normal BM. A total of 14 million nucleated BM cells were in each specimen.
- BM was then diluted 1:10 with PBS.
- 7mL of the diluted sample was placed in CellSave™ tubes and shipped at ambient temperature to Creatv for processing. Specimens were processed within 24 h of collection.
- Specimens were pre-filtered using a 70-µm mesh sieve to remove large particles.
- The effluent was filtered through CellSieve™ microfilters, which have 7-µm diameter pores in a uniform array, of 160,000 pores in a 9 mm diameter area (Fig. 1).
- Filter-captured cells were post-fixed, permeabilized, and stained with DAPI and fluorescent antibodies specific to cytokeratins (CK) 8, 18, and 19 (FITC), EpCAM (PE), and CD45 (Cy5, leucocyte marker).
- For quantitation, SKBR3 cells on the entire filter membrane were analyzed to determine the average and standard deviation (Sample #2 and 3); five 1% area images were analyzed when high numbers of SKBR3 cells were input (Sample #4).
- Contamination was calculated by subtracting the total DAPI count from the DTC count.

RESULTS

Recovery efficiency of cancer cells by using CellSieve™ microfiltration.

- SKBR3 cells were spiked into normal BM samples at 1, 10 and 100 cells per 1 million BM cells.
- 14 million nucleated BM cells were processed by microfiltration per sample - Recovery efficiency was estimated by counting the tumor cells based on DAPI and antibody staining (Fig. 2, Table 1).

<table>
<thead>
<tr>
<th>Sample</th>
<th>SKBR3-Input</th>
<th>SKBR3- Recovered</th>
<th>Recovery (%)</th>
<th>Average (%)</th>
<th>SD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>12</td>
<td>85.71</td>
<td>87.38</td>
<td>4.19</td>
</tr>
<tr>
<td>3</td>
<td>140</td>
<td>129</td>
<td>92.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1,400</td>
<td>1,180</td>
<td>84.29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Enrichment for breast cancer cells from BM by microfiltration

- Residual mononucleated cells from 14 million BM cells ranged from 26,000 to 41,000.
- Fold enrichment ranged from 340-570 with an average of approximately 430.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Residual Mononucleated Cells</th>
<th>Fold Enrichment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40,800</td>
<td>343</td>
</tr>
<tr>
<td>2</td>
<td>36,200</td>
<td>386</td>
</tr>
<tr>
<td>3</td>
<td>24,200</td>
<td>400</td>
</tr>
<tr>
<td>Average</td>
<td>31,000</td>
<td>438</td>
</tr>
<tr>
<td>SD</td>
<td>7,900</td>
<td></td>
</tr>
</tbody>
</table>

Analysis of BM from a patient with metastatic breast cancer.

- Identification of DTCs from patient specimens was based on nuclear features, CKs, EpCAM+, CD45- and increased nuclear-cytoplasmic ratio (Fig. 4 A, B). Normal BM cells could be distinguished from DTCs nuclear-cytoplasmic ratios and staining by CD45 (Fig. 4 C).

CONCLUSIONS

- Bone marrow can be recovered with high efficiency (87%) from bone marrow using microfiltration.
- Recovered breast cancer cells could be further characterized by fluorescent antibody staining.
- Enrichment of breast cancer cells from BM mononucleated cells was approximately 350-400 fold.
- Incorporation of microfiltration may facilitate detection of DTCs from bone marrow.

REFERENCES