Real time monitoring of solid tumor progression by circulating stromal cells in early and late stage disease

Daniel L Adams¹, Raymond Bergan², Martin J Edelman³, Stuart S Martin⁴, Rena Lapidus⁵, Saranya Chumski⁶, Cha-Mei Tang⁷, Steven H Lin⁷
¹创下MicroTech, Inc., Monmouth Junction, NJ 08852, ²OSHS Knight Cancer Institute Portland OR 97239, ³Fox Chase Cancer Center, Philadelphia, PA 19111, ⁴University of Maryland School of Medicine, Baltimore, MD 21201, ⁵Mayo Clinic Cancer Center Jacksonville, FL 32224, ⁶创下MicroTech, Inc., Potomac, MD 20854, ⁷MD Anderson Cancer Center, Houston, TX 77030

ABSTRACT
Blood based biomarkers (PSA, CEA, CA125) are used to track real time progression of disease in parallel with imaging. However while numerous blood biomarkers exist, they are specific to cancer type (i.e. PSA to prostate and CEA to colon) and may not appear in all diseased individuals. Recently cancer associated macrophage-like cells (CAMLs), a circulating stromal cell subtype, were identified in various solid cancer types which were observed increasing in size and in hyperplopyd during progressive disease. To assess whether CAML enlargement is a biomarker of progression/response, we tracked CAML growth/shrinkage in a pilot study of patients (n=34). Blood was drawn from patients with lung, prostate, or breast cancers over a 3 month period, baseline through 2 treatment cycles, followed by continued monitoring for 2 years. These data suggest that morphological assessment of CAMLs (growth/hyperplopyd) appear to parallel cancer progression, or response to treatment, in multiple solid tumors.

INTRODUCTION
CAMLs are specialized myeloid polyploid cells transiting the circulation of patients in various types of solid malignancies and appearing in all stages of cancer1,4. While CAMLs are easy to identify by their large size and polyploid nucleus, they appear to present as stem cell like phenotype with multiple heterogeneous epithelial, myeloid, and endothelial markers.

MATERIALS & METHODS
A prospective multi-institutional study used anonymized peripheral blood samples from 34 cancer patients undergoing therapy [stage I (n=2), II (n=3), III (n=8) & IV (n=21)] with breast (n=10), lung (n=16), & prostate (n=8). Samples were taken prior to therapy (BL), at ~1 month (FU1) follow up and a ~3 month (FU2) follow up, after induction of therapy. Blood was processed by the CellSieve™ microfiltration technique at 4 institutions and stained for cytokeratin 8, 18 & 19, CD14 and CD45. After identification and quantification CAMLs were measured based on hyperplopyd and cell size.

RESULTS
- CAMLs were found in 97% of cancer patients at BL, 97% at FU1 and 94% at FU2
- Over 2 years 7 patients showed no clinical disease progression (blue), while 29 patients had observable clinical disease progression (red).
- Of the patients with no progression (blue, n=7), 1 had CAMLs of ≥50µm at all time points while 6 had only small CAMLs at all time points
- Of the 29 patients that progressed, 22 patients had ≥50µm CAMLs at all time points;
- 2 patients had <50µm CAMLs at BL which increased in size by FU2;
- 1 patient had ≥50µm CAMLs at BL that decreased by FU2;
- 1 patient had small CAMLs at all time points

CONCLUSIONS
- We show that increased CAML enlargement compared to baseline indicate shorter PFS in a variety of cancer types.
- By monitoring CAML changes overtime for individual patients we demonstrated ongoing progression, or response, in tumors correlates to the enlargement, or shrinkage, in CAMLs at follow up time points after treatment induction.
- This pilot study suggests that CAMLs have the potential to monitor the progression/regression of malignancy in real time and suggests the need for larger validation studies.

REFERENCES

FUNDING SOURCES
This work was supported by a Maryland (TEDCO) MTTCF award, grant R01-CA154624 from the National Cancer Institute, grant KG100240 from the Susan G. Komen Foundation, and the U.S. Army Research Office (ARO) and the Defense Advanced Research Projects Agency (DARPA) (W911NF-14-C-0098). The content of the information does not necessarily reflect the position or the policy of the US Government.