Identifying, Subtyping and Classifying Tumor Associated Circulating Endothelial Cells in Solid Tumors

Daniel L. Adams¹, R. Katherine Alpaugh², Steven H. Lin², Jeffrey R. Marks⁴, Raymond Bergan⁴, Stuart S. Martin³, Saranya Chumski⁴, Massimo Cristofanilli⁴, Cha-Mei Tang⁵, Steingrimur Stefansson⁶

¹Creativ MicroTech, Inc., Monmouth, NJ 08852. ²Fox Chase Cancer Center, Philadelphia, PA 19111. ³MD Anderson Cancer Center, Houston, TX 77030. ⁴Duke University Medical Center, Durham, NC 27710. ⁵OSU Knight Cancer Institute Portland OR 97239. ⁶University of Maryland School of Medicine, Baltimore, MD 21201. ⁷Mayo Clinic Cancer Center Jacksonville, FL 32224. ⁸Northwestern University, Chicago, IL 60611. ⁹Creativ MicroTech, Inc., Potomac, MD 20854. ¹⁰HeMetics Biotechnologies, Inc. Rockville, MD 20852

ABSTRACT

Blood-based biopsies can be used as a non-invasive method to recover a variety of cancer associated circulating cells, including Circulating Tumor Cells (CTCs), Circulating Associated Macrophage-like cells (CAMLs), and Tumor endothelial cells (TECs) from the blood of cancer patients. While normal circulating ECs (CECs) are normal constituents of healthy individuals, a Cancer Associated Vascular Endothelial cell (CAVE) subtype has been observed in cancer patients. However, there have been limited efforts to differentiate CAVEs from the many EC subtypes. This is not surprising as in-depth phenotyping of ECs requires an array of biomarkers that until recently has not been feasible. To better evaluate CAVEs, a multi-phenotypic screening of various EC markers was tested of cells isolated from 116 blood samples in 3 different types of solid tumors. This data suggests that CAVEs exist as a common and diverse subtype of tumor derived CECs that can express cytokeratin (CK) and various subtypes of EC biomarkers.

INTRODUCTION

Tumor endothelial cells (TECs) are stromal cells required for tumor initiation, survival and growth by forming the vital structures for angiogenesis and neovascularization. TECs are mandatory constituents at all tumor sites. They are required for tumor vasculature, aid in priming metastatic niches, and contribute to the molecular instability of tumors. In the circulation, a common population of TECs has been identified and defined as CAVEs based on their large size, multicellular clustering, and the classical EC markers CD31 and Vimentin. Size exclusion is a technique for isolating large cells from peripheral patient blood irrespective of their surface marker expression, allowing for the capture of many subtypes of circulating tumor ECs. CellSieve™ microfilters are size exclusion membranes capable of rapidly and efficiently isolating CAVEs, CAMLs and CTCs from whole blood, making it possible to study all cell types in conjunction with and in relation to malignant disease. Further, a multi-phenotyping technique has been developed using CellSieve™ microfilters allowing for a mass screening of subtyping biomarkers on isolated cells.

RESULTS

CAVEs were identified in 63 of 116 patients (54%) based on positivity of CD31, CD144 or CD46, but none were found in healthy controls.

CAVEs were found in 43% of stage I, 66% of stage II, 74% of Stage III, and 82% of Stage IV patients (Fig. 2).

CAVEs were found in 69% of breast, 60% lung, and 77% prostate samples.

No CAVEs were positive for CD14 or CD45.

CD31 was the most present marker, found on 96% of CAVEs, followed by CD144 (85%), Cytokeratin (88%), CD34 (64%), CD146 (45%), EpCAM (23%) & CD105 (4%) (Fig. 3).

CONCLUSIONS

CECs positive for Cytokeratin and negative for CD45 are commonly found in the circulation of patients with solid tumors but not in healthy controls.

We employed a multi-phenotypic subtyping technique to properly identify and subtype these CECs in cancer patients with multiple solid tumor types.

This data suggests that a subset of CECs, e.g. CAVEs, are found in circulation as CK+/CD45-, but exist as a heterogeneous population of cancer specific circulating cells that require further study.

Funding Sources

This work was supported by a Maryland (TEDCO) MTTFC award, grant R01-CA154624 from the National Cancer Institute, grant KG100240 from the Susan G. Komen Foundation, and the U.S. Army Research Office (ARO) and the Defense Advanced Research Projects Agency (DARPA) (W911NF-14-C-0098). The content of the information does not necessarily reflect the position or the policy of US Government.

References


Figure 1. Representative examples of cytokeratin positive CECs that stain positive for CD31, CD146, Vimentin, and CD46, confirming their endothelial origin. All CECs are CD45 negative and CD46 negative. This CEC appears EpCAM negative, although some CECs have been found to express EpCAM.

Figure 2. Percentages of CTC and CAVEs in 116 patient sample in each of the stages of cancer.

Figure 3. Percentage of each marker on the CAVE population for 119 patient samples.