Cancer associated macrophage-like cells in the early detection of solid tumors

Daniel Adams¹, R. Katherine Alpaugh², Massimo Cristofanilli³, Stuart S Martin⁴, Saranya Chumrín⁴, Raymond C. Bergan⁵, Susan Tsai⁶, Martin Edelman⁷, Diane K Adams⁸, Shuhong Li⁹, Olga V. Makarova², Platte Amatuz⁹, Chia-Mei Tang⁹, Jeffrey R Marks⁶

¹Creativ MicroTech, Inc., Mornouth, NJ 08852, ²Fox Chase Cancer Center, Philadelphia, PA 19111, ³Northwestern University School of Medicine, Chicago, IL 60611, ⁴University of Maryland School of Medicine, Baltimore, MD 21201, Mayo Clinic Cancer Center, Jacksonville, FL 32224, ⁵Knight Cancer Institute, Portland, OR 97239, ⁶Medical College of Wisconsin, Milwaukee, WI 53226, ⁷Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, ⁸Creativ MicroTech, Inc., Potomac, MD 20854, ⁹Duke University, Durham, NC 27710

ABSTRACT

Blood-based biopsies can be used as a non-invasive method to recover a variety of cancer associated circulating cells, including Circulating Tumor Cells (CTCs) and Circulating Cancer Associated Macrophage-like cells (CAMLs) from the blood of cancer patients. CAMLs are a newly defined circulating immune cell type, described as a subtype of circulating stromal cells and found specifically in patients with malignant disease. We studied the peripheral blood of cancer patients to ascertain the prevalence, specificity and sensitivity of CAMLs in relation to their disease status at presentation. We compared a variety of benign and malignant diseases, along with matched healthy control blood samples. We supply evidence that this previously unidentified circulating cell can be used as a screening tool to detect solid tumors in numerous malignancy subtypes in all disease stages.

INTRODUCTION

CAMLs are specialized myeloid cells transiting the circulation of patients in all stages of cancer. They are responsive to cancer treatment and are found in multiple cancer types. However, though seen by numerous groups, these cells have remained largely unstudied, and their clinical and biological value in malignancies remains uninvestigated.

Size exclusion is a technique for isolating large cells from peripheral patient blood irrespective of their surface marker expression. CellSieve™ microfilters are precision size exclusion membranes capable of rapidly and efficiently isolating both CAMLs and CTCs from whole blood, making it possible to study both cell types in conjunction with and in relation to malignant disease.

Figure 1. Isolation and identification of CAMLs by size and nuclear size (a) CAMLs are easily identified under 10X magnification from a prostate patient (b) Under 40X magnification the large polyplid nuclear structure can be seen (DAPI). These cells are most of the time positive for CD45 and weakly positive for cytokeratin.

Figure 2. Presence of CAMLs in relation to stage of malignant disease, in healthy controls, and in patients with benign masses.

RESULTS

Peripheral blood samples from cancer patients were provided by University of Maryland, Greenbaum Cancer Center, Northwestern University. The Medical College of Wisconsin, Fox Chase Cancer Center, and Duke University. We ran a prospective blinded study to isolate CAMLs from patients with known invasive carcinomas (n=117), healthy control samples (n=40) and patients with benign non-malignant conditions (n=21). The patient distribution included Stage I (n=39), Stage II (32), Stage III (16), Stage IV (30); breast (n=31), pancreatic (n=22), lung (n=38), and prostate (n=28) cancers. CellSieve™ microfilters were used to isolate CTCs and CAMLs from 7.5 ml of whole peripheral blood. The 7 µm pore size of CellSieve™ is capable of isolating both CTCs and CAMLs based on size. Collected cells were fixed, permeabilized, and stained with DAPI and antibodies against cytokeratin 8, 18 and 19, EpCAM, and CD45. CAMLs were defined as enlarged, multinuclear cells with diffuse cytoplasmic cytokeratin staining; and they can be CD45+ or CD45-. CTCs were defined as filamentous cytokeratin cells that are CD45-.

Table 1: Sensitivity and specificity of CAMLs and CTCs for the detection of invasive carcinomas

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity (95% CI)</th>
<th>Specificity (95% CI)</th>
<th>AUC</th>
<th>PPV (95% CI)</th>
<th>NPV (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAMLs</td>
<td>87% (80-93%)</td>
<td>100% (91-100%)</td>
<td>0.93 (0.89-0.96)</td>
<td>100% (97-100%)</td>
<td>95% (59-84%)</td>
</tr>
<tr>
<td>CTCs</td>
<td>21% (14-29%)</td>
<td>100% (91-100%)</td>
<td>0.60 (0.57-0.64)</td>
<td>100% (86-100%)</td>
<td>30% (22-39%)</td>
</tr>
</tbody>
</table>

Table 2: Sensitivity and specificity of CAMLs and CTCs for the detection of invasive carcinomas vs Benign conditions

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity (95% CI)</th>
<th>Specificity (95% CI)</th>
<th>AUC</th>
<th>PPV (95% CI)</th>
<th>NPV (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAMLs</td>
<td>87% (80-90%)</td>
<td>76% (53-92%)</td>
<td>0.82 (0.67-0.89)</td>
<td>95% (89-99%)</td>
<td>52% (31-70%)</td>
</tr>
<tr>
<td>CTCs</td>
<td>21% (14-29%)</td>
<td>100% (84-100%)</td>
<td>0.60 (0.57-0.65)</td>
<td>100% (86-100%)</td>
<td>18% (12-27%)</td>
</tr>
</tbody>
</table>

Figure 3. ROC curves using CAMLs (blue) or CTCs (red) for invasive carcinomas vs healthy controls (left) or invasive carcinomas vs Benign conditions (right).

CONCLUSIONS

- Highly differentiated monocytc cells transit the blood of cancer patients
- CAMLs can be used as a non-invasive blood based biopsy, to detect the anatomical presence of solid malignancies.
- CAMLs sensitivity and specificity suggests its role as a blood biomarker for early stage cancer screening in a broad population and at-risk groups.
- This data suggests that larger studies be done to determine the use of CAMLs a s a screening tool for cancer.

Funding Sources

This work was supported by a Maryland (TEDCO) MTTCF award, grant R01-CA154462 from the National Cancer Institute, grant K0100240 from the Susan G. Komen Foundation, and the U.S. Army Research Office (ARO) and the Department of Defense Advanced Research Projects Agency (W911NF-14-C-0098). The content of the information does not necessarily reflect the position or the policy of the US Government.

References