Isolation and Identification of Circulating Tumor Cells (CTCs) from breast and prostate cancer patients

Daniel Adams1, R. Katherine Alpaugh2, Massimo Cristofanilli3, Stuart Martin4, Saranya Chumsri4, Monica Charpentier4, Raymond Bergan5, Irene Ogden5, Peixuan Zhu1, Olga Makarova1, Shuhong Li1, Platte Amstutz1, Cha-Mei Tang1

1 Creatv MicroTech, Inc., Rockville, MD, 2 Fox Chase Cancer Center, Philadelphia, PA, 3 Thomas Jefferson University, Philadelphia, PA, 4 University of Maryland School of Medicine, Baltimore, MD, 5 Northwestern University, Chicago, IL

ABSTRACT

Microfiltration is an increasingly popular method for isolating circulating tumor cells (CTCs) from the peripheral blood of cancer patients with solid tumors2-4. The microfiltration approach can be used on peripheral blood as a non-invasive "liquid biopsy" for precision cancer detection, regardless of surface marker expression2-4. Here we describe the use of CellSieve™ microfilters to isolate and subtype CTCs from the peripheral blood of breast, and prostate cancer patients. As it is accepted that CTCs isolated from patient samples represent a highly heterogeneous population with varying degrees of epithelial/mesenchymal differentiation, microfilter isolation may be optimal for the purification of all CTC subtypes. We hypothesize that CTCs from these two different epithelial malignancies can be identified and grouped into distinct subtypes by morphological characterization.

INTRODUCTION

CTCs are cells that originate from a primary solid tumor and are found transiting the circulatory system. It has been well established that CTC enumeration can be used to monitor therapy response and predict outcome.1,4 Size exclusion is a technique for isolating CTCs from patient samples, irrespective of their surface marker expression.2,4 CellSieve™ microfilters are lithographically fabricated membranes with high porosity, precise pore dimensions, and patterned pore distribution.5 We previously reported that CellSieve™ rapidly and efficiently isolates CTCs from whole peripheral blood, using fluorescent antibody stain as the detection platform. In addition to enumerating CTCs, subtyping by phenotypic determinates may aid in identifying the CTCs cellular status for diagnosis, prognosis and therapy determination.1,4

RESULTS

The three malignancies have distinct identifiable morphologies

- Breast – high CK expression in a filamentous pattern (Figs. 1a, 1b and 3).
- Prostate – express PSMA and fine filamentous CK (Fig 2).
- Within each cancer CTCs could be subdivided
 - EMT-like CTCs – low expressing CK with smooth nuclear profile (Fig 4b and 4c)
 - Apoptotic CTC – spotted nuclear and CK patterns (Fig 4a)
 - CTC Clusters – CTCs found in clusters (Fig 1b, 3, & 4c)
- PSMA can verify identified CTCs as prostate cells (Fig 2).
- Phenotypic traits can be identified and classified for comparative analysis (Figs. 1-3).

CONCLUSIONS

- Microfiltration captures CTCs regardless of surface marker expression
- CTCs have multiple distinct phenotypes
- CTC phenotypes differ between malignant diseases
- Microfiltration captures weakened and apoptotic CTCs.
- CTC subtypes may indicate definable traits which may be exploited for personalized treatment of cancer patients

REFERENCES