Multi-analyte subtyping of circulating cancer derived cells for screening Immunotherapeutic targets

Daniel L Adams¹, R. Katherine Alpaugh², Steven H. Lin³, Massimo Cristofanilli⁴, Stuart S. Martin⁵, Saranya Chumson⁶, Cha-Mei Tang⁷, Steingrimur Stefansson⁸

¹ Creatv MicroTech, Inc., Monmouth, NJ 08852, ² Fox Chase Cancer Center, Philadelphia, PA 19111, ³ MD Anderson Cancer Center, Houston, TX 77030, ⁴ Robert H Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, ⁵ University of Maryland School of Medicine, Baltimore, MD 21201, ⁶ Mayo Clinic Cancer Center, Jacksonville, FL 32224, ⁷ Creatv MicroTech, Inc, Rockville, MD 20850, ⁸ HeMemesics Biotechnologies Inc., Rockville, MD 20852

Molecular Med Tri-Con, San Francisco, March 6-11, 2016

ABSTRACT

In tissue biopsies, cancer samples are micro-sectioned, producing multiple semi-identical specimens that are analyzed and subtyped proteomically and genomically with numerous biomarkers. A common issue with biomarker panels of tissue biopsies is that over time and after intervention, the evolution of the tumor can produce distinctly different cell subpopulations, with proteomic and genomic patterns inconsistent with the original biopsy. In blood based biopsies (BBBs), multiple blood samples can be taken sequentially, but clinical utility is typically limited to cell enumeration, as only 2-3 biomarkers can be used. Here, we describe a technique that provides the ability to sequentially retain isolated rare cells from BBBs with numerous additional subtyping biomarker panels for use in screening therapeutic targets.

INTRODUCTION

Circulating Tumor Cells (CTCs) are an indicator of malignant disease, used to monitor therapy response and predict outcomes in late stage patients.¹ However, CTCs are not common in all diseases, and the low frequency makes the tracking of therapeutic response difficult.

Cancer Associated Macrophage-like cells (CAMLs) are a newly-defined circulating immune cell type, described as a subtype of circulating stromal cells. They express actionable drug targets (e.g. TIE-2, CXCR4, PD-L1, etc), have been shown to be present in all stages of cancer, are responsive to cancer treatments, and are found in multiple cancer types.

EMT-like cells are found in almost all patients with solid malignancies and are theorized as the aggressive CTC subtype that initiates tumor metastases. Typically, EMT-like cells are identified by their down regulation of EpCAM, and/or Cytokeratin, and up regulation of Vimentin, and/or N-Cadherin.¹ ⁴

We have reported that CellSieve™ microfilters rapidly and efficiently isolate the three most common circulating cancer associated cells (CAMLs, CTCs, and EMTs) from whole peripheral blood, making it possible to study all cell types in conjunction with, and in relation to, therapy response in a variety of malignant diseases.³ ⁴

RESULTS

- At least one cancer associated cell (i.e. CTC, EMT or CAML) was identified in 95% of samples tested.
- Cells could be identified, marked, fluorescence removed, and sequential staining performed.
- No degradation was observed in cell surface/intracellular markers for 3 rounds of QUAS-R re-staining.
- We performed sequential staining of cancer derived cells, quantifying the expression patterns of numerous applicable drug targets (e.g. EpCAM, CD31, CD34, CXCR4, Vimentin, PD1, and PD-L1).

CONCLUSIONS

- Our data demonstrates that one can sequentially screen, analyze and track drug applicable targets using a panel of cancer associated cells from blood based biopsy.
- Using multiple cell types provides a greater amount and broader variety of information than single cell analysis.
- This approach can be used in research, patient selection and companion diagnostics, and/or monitoring of response for immunotherapy.

Funding Sources

This work was supported by a Maryland Technology Development Corporation (TEDCO) MTTCF award, grant R01-CA154624 from the National Cancer Institute, grant KG100240 from the Susan G. Komen Foundation, and the U.S. Army Research Office (ARO) and the Defense Advanced Research Projects Agency (DARPA) (W911NF-14-C-0086). The content of the information does not necessarily reflect the position or the policy of the US Government.

Figure 1. Decrease of signal over time.

Time 0 Time 30 min Time 60 min Time 90 min

Figure 2. Representative examples of the percent change of signal during multiple rounds of the QUAS-R technique.

Figure 3. Sequential staining, qualification and quantification with an array of biomarker panels against the same cell cluster. An EMT-like CTC cluster, identified with a “classical” CTC stain (top), a panel of motility markers (middle), and a panel of immune activation markers (bottom).

Table 1. Percent of signal change by drug target.

<table>
<thead>
<tr>
<th>Drug Target</th>
<th>Stain 1</th>
<th>quench</th>
<th>Stain 2</th>
<th>quench</th>
<th>Stain 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD14 (HLVEC)</td>
<td>50%</td>
<td>0%</td>
<td>10%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Cytokeratin (LncAP)</td>
<td>50%</td>
<td>0%</td>
<td>10%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>CXCR4 (MB231)</td>
<td>50%</td>
<td>0%</td>
<td>10%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Vimentin (MB231)</td>
<td>50%</td>
<td>0%</td>
<td>10%</td>
<td>0%</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4. Heat map of the percent of EMT-CTCs positive for the 9 markers (9 pancreatic cancer markers). Dark blue is 100% cell positivity and white is no cell positivity.

<table>
<thead>
<tr>
<th>CD45</th>
<th>EpCAM</th>
<th>Cytokeratin</th>
<th>CD14</th>
<th>Vimentin</th>
<th>PD-L1</th>
<th>CXCR4</th>
<th>CD34</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD4</td>
<td>P5</td>
<td>P7</td>
<td>P12</td>
<td>P11</td>
<td>P15</td>
<td>P12</td>
<td>P11</td>
</tr>
</tbody>
</table>

References

Contact: cmtdang@creatvmicrotech.com 301-983-1650

Copyright © February 2016 Creatv Micro-Tech, Inc., all right reserved