

Blood based biopsies in the age of Immunotherapy:

How do we utilize circulating cells?

Daniel Adams
Senior Research Scientist/Head of Clinical Core Laboratory
Creaty MicroTech, Inc.

- Employee of Creatv MicroTech, Inc.
- Multiple patents on the technologies discussed

Immunotherapies involve multiple cell types (Ex: PD-1/PD-L1 pathway)

PD-L1 can be found on:

- Tumor cells
- Stromal macrophages
- Stromal Tc cells
- Stromal Th cells
- Stromal Dendritic cells
- Tumor fibroblasts
- Others

We must rethink how companion diagnostics work

Advantages of Circulating Tumor Cells (CTCs)

Advantages

- Provides prognostic information
- Tracks response to therapy
- May provide:
 - Genomic profiling of tumor/metastases
 - Proteomic profiling of the tumor/metastases

Pathologically defined CTCs (PDCTC)

- CK 8, 18, 19 (+) and filamentous
- DAPI (+) cancerous morphology or in division
- CD45 (-)

Disadvantages of CTCs

Disadvantages

- Uncommon (~0-10 per mL blood)*
- Low frequency (19%-57% of malignant carcinomas)*
- Only found in late stage/metastatic
- Tumor cells alone do not represent the stromal environment

Blood based biopsies must have multianalyte cell biomarker capabilities

- Circulating Tumor cells (CTCs)
- Circulating Stromal cells (CStCs)
 - Tumor derived endothelial cells
 - Epithelial-mesenchymal transition cells (EMTs)
 - Tumor associated macrophage-like cells (CAMLs)
 - Tumor derived T cells
 - Tumor associated fibroblasts

Cell isolation based on size

CellSieveTM Microfilters

- Uniform 7 µm pore size and distribution with high porosity
 - Rapid, consistent and gentle flow
 - 3 min to filter 7.5 ml of blood
 - Small (100uL) and large (>30mL) sample size
- Non-fluorescence
- CellSave tubes are run ≤ 96 hrs

Analysis of Immunotherapy

Breast

CTC with bound white blood cells

Cytokeratin positive cell with bound white blood cell

Discovery

Discovery

Circulating Cancer Associated Macrophage-like Cells (CAMLs)

CAMLs in Cancer Patients

None in healthy controls

Total n=272

Cancer types

- Breast
- Prostate
- Pancreatic
- Lung (NSCLC)
- o Colon
- Esophageal

Sensitivity 89% (95% CI 85-93%) Specificity 100% (95% CI 91-100%) PPV 100% (95% CI 98-100%)

EMT like Cells

EMT like Cells

Criteria unique to high resolution imagery

- CK 8, 18, 19 (+) diffuse/non-filamentous
- DAPI (+) cancerous morphology
- CD45 (-)

Overall Survival for EMT Cells population (Breast)

We analyze CTCs and CStCs to maximize useable biomarkers

Tracking origin of CStCs

Low Before Radiation

High Post Radiation

RAD50 foci ranged from 0-20 per cell, with an average of 0.57 at T0 that increased to 5.11 at T1 (p<0.001) during radiotherapy

Subtyping CTCs and CStCs by Immunotherapeutic markers

Tracking upregulation and down regulation of biomarkers in real time

Low Before Radiation

High Post Radiation

PD-L1 expression ranged from 34-2711 pixel intensity, with an average of 281 at T0 and 565 at T1 (p=0.07).

PD-L1 changes in NSCLC patients before and after radiation treatment

CREA7

Research Collaborators

Research Institute	Collaborators
University of Maryland Baltimore	Stuart Martin, Ph.D., Monica Charpentier, M.D.
	Martin Edelman, M.D., Rena Lepidus. Ph.D.
Northwestern University	Massimo Cristofanilli, M.D.
Fox Chase Cancer Center	R. Katherine Alpaugh, Ph.D.
Johns Hopkins University	David Loeb, M.D.
Mayo Clinic Cancer Center	Thai Ho, M.D., Saranya Chumsri, M.D.
MD Anderson	Steven Lin, M.D.
Medical College of Wisconsin	Susan Tsai, M.D.
OHSU Knight Cancer Institute	Raymond C. Bergan, M.D.
Duke University	Jeffery Marks, Ph.D.
Memorial Sloan Kettering Cancer Center	Daniel Danila, M.D., Howard Scher, M.D.
Washington University	Rebecca Aft, M.D.
University of Chicago	Susan Cohn, M.D.
George Washington University	Christian C. Haudenschild, M.D.
Hememics Biotechnologies	Steigrimur Stefansson, Ph.D.

- Maryland TEDCO MTTCF award
- The U.S. Army Research Office (ARO) and the Defense Advanced Research Projects Agency (DARPA) (W911NF-14-C-0098)

The content of the information does not necessarily reflect the position or the policy of the US Government.

Company Contact

301-983-1650

cmtang@creatvmicrotech.com

www.creatvmicrotech.com

Booth # 314